Deep Reinforcement Learning based Multi-Agent Collaborated Network for Distributed Stock Trading
نویسندگان
چکیده
منابع مشابه
Multi-Agent Deep Reinforcement Learning
This work introduces a novel approach for solving reinforcement learning problems in multi-agent settings. We propose a state reformulation of multi-agent problems in R that allows the system state to be represented in an image-like fashion. We then apply deep reinforcement learning techniques with a convolution neural network as the Q-value function approximator to learn distributed multi-agen...
متن کاملLenient Multi-Agent Deep Reinforcement Learning
Much of the success of single agent deep reinforcement learning (DRL) in recent years can be attributed to the use of experience replay memories (ERM), which allow Deep Q-Networks (DQNs) to be trained efficiently through sampling stored state transitions. However, care is required when using ERMs for multi-agent deep reinforcement learning (MA-DRL), as stored transitions can become outdated bec...
متن کاملA multi-agent framework for stock trading
Abstract: TrAgent is a secure multi-agent environment which models a stock exchange such as the New York Stock Exchange and the procedure of trading securities on the trading floor. The model comprises the complete process from the initiation of a trading order until its execution and also deals with the security issues involved. The multi-agent paradigm is the framework for implementation of t...
متن کاملDeep Reinforcement Learning for Pairs Trading
Reinforcement learning (RL) [1] differs from traditional supervised machine learning in the sense that it not only considers short-term consequences of actions/decisions, but also long-term outcomes. Because of recent advances in deep learning, model-free deep reinforcement learning (DRL) has proven successful in various applications, as with the success of a deep Q-network (DQN) in the Atari g...
متن کاملReinforcement Learning in Online Stock Trading Systems
Applications of Machine Learning (ML) to stock market analysis include Portfolio Optimization, Investment Strategy Determination, and Market Risk Analysis. This paper focuses on the problem of Investment Strategy Determination through the use of reinforcement learning techniques. Four techniques, two based on Recurrent Reinforcement Learning (RLL) and two based on Q-learning, were utilized. Q-l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Grid and Distributed Computing
سال: 2018
ISSN: 2005-4262,2005-4262
DOI: 10.14257/ijgdc.2018.11.2.02